
Interact. d e Terascale Particle Visualization

David Ellsworth' Bryan Green Patrick Moran
Advanced M a r q e m e n t Technology, Inc.

X.4Sz4 Ames Research Center
Advanced Mariagement Technology. Inc.

K.kSA4 Ames Research Center
?;MA -4mes Research Center

Fi,oure 1: Streakline visualization of a 2 TB liquid hydrogen turbopump data set.

Abstract

Tiis paper describes the methods used to produce an interactive vi-
sualization of a 2 TB computational fluid dynamics (0) data se?
using panicle tracing (streaklines). We use the method introduced
by Bruckschen et al. [2001] that precomputes a large number of par-
ticles, stores them on disk using a space-filling curve ordering that
minimizes seeks, and then retrieves and displays the p h c l e s ac-
cording to the user's command. We describe how the particle com-
putation can be performed using a PC cluster, how tfie dgorit!m
can be adapted to work with a multi-block cun4inea.T mesh., and
how the out-of-core visualization can be scaled to 296 billion paii-
cles wMe snll achieving interactive performance on PG hardware.
Compared to the earlier work, our data set size and total number of
particles are an o r h r of magnitude larger. We also describe a nen-
compression technique that allows the lossless compression of the
particles by 41% and speeds the parricle retrieval by about 30%.

' e-mail. {ellswort.bqeen} @nas.nasa.gov. panxk.j.moran @nzsa.go\

CR Categories: 1.3.8 [Computer Graphics]: Applications:
EA [Coding and Information Theory]: Data compaction Lid
compression: D.l.5 [programming Techniques): Concurrent
Programming-Parallel progamming

Keywords: visualization. particle tracing, large data, out-of-core,
PC hardware. clusters, compurational fluid dynamics.

1 introduction

interactive visualization of data se?s containing a terabyte or more
is difficult or impossible to do evec on the largest systems. \ t r y
few systems have enough memoq to store the data in memory.
Out-of-core visualization using traditional visualization algorithms
is impossible since the data rates of tens of gigabytes per second
necessary are currently not possible. However, it is currently quiie
possible to generate multi-terabyte data sets of CFD or physics cal-
culations on today's supercomputers. In addition. using PC-class
hardware for tlle visualization is desirable since this allows scien-
tists to examine their results on their desktop.

One approach that scales to large data sets is to precompute the vi-
sualization. In most cases. the resulting geomem can be displayed
interactively. For time vaii inz data. a visualization can be com-
puted for each t ine step. and. if not too large. can be animated.

rradc novie. Howzver. zil of Lqese ~ s L ~ o d s su?fe'r̂ tlr f i o ~ a iack of
ix::axi\-i? since tine visaaiizacior cornputxior, musr be rc?ear:c

. ~ ~ ~ e ~ y ~ ~ e . ez,-h firame cc;. be re3d-re-j ~ ~ f ~ y & q ~ sho-g*yn 2s a

whenever the visualization parameters (particle seedpoint. isosur-
face value, etc.) are changed.

The approach introduced by Bruckschen et al. [ZOO1 J for interactive
particle visualization does not have this limitation. By computing
a large cumber of streaklines from a regular ,srid of seedpoints and
storing them on disk, a subset of the traces can be remeved and
viewed interactively. This approach stores the traces on disk in a
format that allows the streaklines to be read from disk quickly. Each
trace is stored contiguously. In addition, the traces are written to
disk in the order of a Morton space-filling curve [Sagan 19941, also
known as a Peano or z-curve. This ordering reduces the number of
disk seeks required to retrieve a 3D box of seedpoints.

In this paper, we describe several extensions to this work and the
results from applying the resulting system to a 2 TB CFD simula-
tic" nf a !i@ hydrogen hlrhopiump (y e Figimp 1). We extend the
approach to allow for particle advection though a data set defined
on a multi-block curvilinear ,gid. We also describe how the parti-
cle advection can be computed on a Beowulf cluster with a limited
amount of memory per node and how the particle data can be com-
pressed by about 40%. Finally, we describe a viewer implemen-
tation that interactively retrieves particles from a file server. The
viewer uses a server process that runs on one or more file servers,
retrieves panicle data, and sends it to a display process running on
a workstation. The viewer prefetches data from one or more file
servers for increased performance.

2 Related Work

T$lsu.'iz&cn of !..ne &:a sers hzs heen &r z e i of acciye resezch. -
.4 commonly used technique is to precompute the visualization by
saving a series of images or sets of geometry. Two of the many
sysrems thar use precomputation x e IBM Visudizarion Data Ex-
plorer (now OperDX) [Abram and Treinish 19951 and WAT b a n e
19941. Out-of-core visualization is another approach to handhg
large data sets. Chiang et al. [Chang et al. 19981 propose a fast
out-of-core technique for extracting isosurfaces using a precom-
puted disk-resident index: Chang [2003] has recently extended the
technique to handle rime-varying data. A different out-of-core tech-
nique is to load only the portion of the data needed to produce the
visualization via demand paging [Cox and Ellsworth 19971. While
this technique supports particle racing and other visualizations. it
does not allow interactive visualization of terascale data sets. Ueng
et al. [1997] have implemented a different out-of-core particle trac-
ing system that works with unstructured meshes.

A different large data visualization technique is to stream the data
through a series of filters that produce the visualization, as proposed
by PLhrens et al. [2001]. This technique scales.to handle very large
data sets, and can be run in parallel. It should allow interactive
visualization if the data are not too large and the visualization is
computed on a sufficiently large system. However, streaming sys-
tems are not suitable for particle tracing because streaming requires
a priori howledge of the data access pattern, whch is not available
with particle tracing. Finally, Heerman [1999] documents many of
the issues encountered when dealing with terascale data on a day-
to-day basis.

3 Algorithm Overview

01ui visualization approach has two phases that run at dzerent
tixes. The particle ccmputadon qplication runs 2s 2 preprocessing

iop plane second plane

rhird plane bonom plane

Figure 2: 4 ~ 4 x 4 Morton curve.

14 15 17
top plane Donom plane

Figure 3: 3 x 3 x 2 Morton curve.

step, and the viewer application is used for the interactive visualiza-
tion. The computation application uses the input data set and writes
metadata and particle traces to disk. The viewer application shows
the particle traces to the user.

The particle data are organized as a series of files, one per time step.
Each file has the streaklines computed for each seedpoint stored
contiguoudy, which allows the streakline to be read with one disk
read. Furthermore, the particle traces are placed in the file accord-
ing to their Iviorton order [Sagan i994j, which means thar uaces for
seedpoints near to each other in physical space are usually near to
each other i~ the par!ic!e !?!e, !%her reducing rhe number of disk
seeks.

The Morton order is based on a space-filling curve, and is the same
as the ordering seen when performing a depth-firs1 traversal of an
octree's leaf nodes. Figure 2 shows the Morton order of a 4 x 4 ~ 4
cube. Because the Morton order is only defined for cubes with
powers-of-two sizes. we use a momfied Morton order that handles
arbitrary &mensions. 'Ihs order is the same order as the one you
would get if you traversed a cube that was the smallest power of
two possible enclosing the desired array, but did not count elements
outside the array. Figure 3 shows an example. The earlier imple-
mentation [Fhckschen et al. 2331; has Elore de:ails on how thc
Morton order reduces disk seeks.

Each file has a header giving the length of each trace, followed
by the particle traces. Unlike Bruckschen et al.'s implenentation,
wl-uch uses a single trace length for each fiIe. we choose to store
variably-sized traces, which only contain particles remaining in the
domain. While using a single trace length simplifies the data access
and makes saving the particle trace lengths unnecessary, it would
have increased the amount of uncompressed particle data by about
33% or 700 GB. We could have limited the excess storage by limit-
ing the maximum trace length, but doing so would limit our ability
to determine the amount of recirculation and particle mixing, an im-
portant CFD visualization task. Compressing single-length particle
traces would reduce the amount of extra storage. but we have not
investigated thls.

We follow Bruckschen et al. by compressing the particles' 32-bit
floating point coordmates to I 6 bits. The 16-bit values are com-
puted b?; subtracting one comer of the mesh's boundmg box. divid-
ing by the size of the bounding box, and quantizing the resulting
fracrions to 16 bits. Given the resolution of current screens. rhe re-
sclting particle coordinates should place the particles on the screen

error smaller than a pixel unless the view only shows

/ /

- - -
. e , .

0 600 1200 1600 X O
i " ' " l " " ' 1 " " ' l '

Fgurs 4: Number of pvricles calculated per cirne step

a v e q s x d l fracrion of the overall data set

%ice we do not iimit the iength of particle traces, the worsr-case
total number of particles over all the time steps is propocional to
the square of the number of rime steps. As shown in Figure 4. the
number of ?=ides per time step is not very far from the worsr case,
v;hch results in large panicle files and very long Computation times
(see Section 4.

3.1 curvilinear Data

Coaputicg pa%cies in a data set using a regular -grid [Bruckschen
et al. 2001j is s o m e w h s i p l e r compared to a curvilinear grid.
Psriicle integatioil requires remeviilg veiocin; vaiues at arbitraii
points in physical space. This is straig'nrforuard with re-gular
grids. hut is more coinplicated with multi-block cwilinear -gids.
These *cis requke point location code to h d ;he cell enclos-
in? the requested physical location. and addirional code to resolve
C ~ C S ithere mdziple *& 0\'2ii;ip. US? the Fieid hindti ii-
brarj. [h.lorm 30011 for accessing velocity vaiues. which simplifies
the retrieval from an application's point of vieu. to a single fmction
CAI nncr the -FLj h z

.An additional complication IS that the domain of cumiline3s gfids
are much more i r re=dz than regular -grids. which means that iind-
ing the seed?oinrs for rhe panicle inregation recukes a hi? more
\vork. Like Bruckschen e: &.*s [2001] impiementauon. we use a
regular gr;d of sedpoiat locations. Xowever. me re-gular ,"ild of
seedpoints is usually evenly spaced throughout the bounding box
of tFle mesh {Lie mer can specify a different box of seedpoinrs if 31:

area is of p ~ m c d a r intcest). With many cmilinear grids. mcst of
these iniriar' seedpoints are outside the g id . In our dara sei. only
14% of the L i iCd setd7oinrs are inside the yrid. We ?id h e seed-
points inside the gi-;G {he acrtve seedpoints. at the start of the com-
p t a c o n b). testing n-hether eaci; iritial seedpoint is insidc the
domsn. Om -gid v z ~ e s over The. wilch means fiat hoies in th.2

grid that correspond io the interior of a iurbinc blade can mow over
time. Thus. u e test each iridal seedpoint against a number of M e r -
rnr "d t i ne s q s : seedpoinrs inside any time step aiie considered
active sredocicrs. Si:? res: twenty time strps each spactti L - ~ e e ;irre

ad

-t. I seedpoinr ~ "d size ._ :<> 1 6 - w 1 6 - ,

3uz;bsr of iniltial setdpoints
3 u n b e r of acsve seedpoinrs i3 . i i i 1

Total number of pmicies 296 billion 1
PLricie storage (uncompressedj 1777 GB I

~ Panicle s toiqe (compressed) 1038 GB I

976.1 15

Table 1 : Initial data set and pmicle data smisrics i?vI=IOC. GI 001.

dinlension5 of the initial seedpoint md, tFle box containing Lie ini-
tia! seecpoinrs. me -ad bo the number of aczix-e seed-

seedpoint is not active. and is m e number of the active seedpoint
otkeruise. This a i a y of vall;es is needed because rhe panicle d e s
only coniain traces for the active seedpoincs: otherwise the viexei
application would nor be able ro determine u-hich selected inirial
ssedpoin:s have pmicle dats nor the position or' h e valid seed-
points L-irhin the pnicle 51~~.

Another option with curvilinear -grids is to place seedpoints evenly
in compurational space. Computational space s e e h g is clearly de-
sirable when the scientist would like to see particles placed &-ound
a moving object. such as a rotaring turbine blade. Compu:ational
seeding night be considered scperioi because tFe seedpoin: den-

:ells a.ili not he constam once the p&icles have been advecei? a
significanr distance. Our current impiementarion does not supporr
computational seeding. but n a y in -he l%rure.

pfiinrs. ET& E Y * J ~ f ~ r each i

s i r) folio~~rs rile ceii densiqy. G&oiigh rile &nsi<y of pai~isles iii

4 Particle Computation

was done on a 39-node Beo\vulf ciusrsr
q ins pzqicie coclpurxion amon; the
since the cdcdarions for each seedpoint

are independenr. However. gexing the dara ro the calculatior: uas
E5cu l t since we obi,iousl>- caiixoi load :he entire 2 TB data 521
i x o each nodr's 1 GB o f ~ e r x q . c: rvzz on ex'. ncds's 100 GB
disk. The m o m t of &:a nzeded a? once can be greatly reduced by
onl>- loading paiiis of time steps (hot5 -*d and solution! at a time.
aduiiciiig the pwicits. zrrd ihzn ioadng thc next Sine siep [Lane
19941. Hou.e\.er. i ! s would s d l req~i ie 1.: GE of msrnoF. m d
a o d d ciuse a lot of pzge swappizg ann0 IOU. CPC urilization. Lf-e
2s- S ~ ~ : C A td , ; i cpe j to : e & ~ :hi. J x ~ md Z ~ ~ O C icqc i~ i i i3 ; t i .
as descfibed belou..

m e use the follou.ing system achitectiux. The inpur CFD dat2 ax
stored on a file sen-er ivirfi 4.5 TB of disk. Each node reads the
input data it need5 from the !ile server. and sends the computed
p~r5clzs :a the izaster node. The mzjie: node buffers the cornpiired
panties and u'ntes h e m ro each o u p u E e L7 order. The ourput
Eies are s;o~cd on i h 5le server. m d ~ v i i t t e r ;.ia L F S .

T;ne seedpoints are diiidrd inro 196 ecuai-sizcd chunks (4 c h ~ ~ k s

seedpoints ne= the domain exir will have shorter traces than ones
near the domain entrance. We give each node 4 disparate chunks of
seedpoints to reduce load imbalaxces caused by this effect.

We reduce the memory usage via several techniques:

0 Loading only a pair of time steps at a time, as described above.

0 Reducing the particle memory footprint. T h ~ s is signrficant
since each node will have about 4 million particles at the
end of the computation. Our initial partisle tracing code was
very general (dowing pzttcles constrained to a computa-
tional plane, streaklines or streamhes, etc.) and stored sev-
eral intermediate results for increased speed, and used over
200 bytes per particle. We reduced the memory to 24 bytes
per particle by removing unnecessary features and not storing
the intermediate results.

'

0 Exploiting the regularities in the !grid, as described below.

0 Using an out-of-core algorithm to load solution data via de-
mand paging, also described below.

4.1 Exploiting Mesh Regularities

The mesh has 35 blocks, or zones, each representing a part of the
domain. Many of the zones contain vertices near various features,
such as turbine blades. Some of the zones rotate over time, such as
those surrounding the rotating blades of the turbine (see Fi-we 1).
Other zones do not change over time. Furthermore, many of [he
zones are rotated copies of other zones in the same time step, such
as the zones that contain points around each of the blades.

We used the techniques described in @Usworth and Moran 20031
to find the regularities described above and replace the time-varying
mesh (contained in 2400 mesh files) with a replacement mesh that
requires that only 46% of one mesh file be loaded. The replacement
mesh uses three zones that refer to static data, four zones that rotare
over time, 15 zones that rotate over time and can reuse the vertices
from another zone, and 12 zones that are static and can use rotated
vertices from another zone. All of the zones have unique IBLANK
data (per-vertex flags that indicate validity and correspondences be-
tween zones) that do not vary over time. Thus, all the IBLANK
flags from a single time step must be loaded. Using the replace-
ment mesh cuts down the amount of mesh data by over a factor of
5000. (However. not all of the original mesh data would need to be
loaded if the demand paging techniques described below are used.)

4.2 Demand-Paging Solution Data

Because each cluster node computes particles for seedpoints clus-
tered in a few parts of the domain, each node does not access all of
the solution data (the velocity values). We avoid loading unneces-
sary solution data by using demand paging. T h ~ s technique divides
each solution file into a number of fixed-size blocks. When a solu-
tion file is opened, a data structure is created that indicates whether
a given block is present, and points to the block if it is. Then,
when solution data are requested, the data retrieval code checks
whether the corresponding blocks are present, loads the blocks if
not present, and then retrieves the requested data from the blocks.
The data blocks are allocated from a fixed-size pool of blocks. If a
block is needed when all the blocks are allocared, an in-use block
tha; has not been recently accessed is chosen aid reiised. Each
block contains an 8 x 8 x 8 cube of data. a-hicn reduces rhe number
of blocks needed compared to blocks of &:a orynized in srandad

array order. More details about r'his techmque can be found in [COX
and Ellsworth 19971.

Unfortunately, the computation must wait while a block is loaded
from the file server. We reduce this waiting by using a number of
different beads , each working on a trace from a different seed-
point. When a thread starts waiting for a block of data, a different
thread is made runnable (if one is available) so the processor is kept
busy. This multithreading techmque is also used to provide work for
the two processors in each node. We speed the retrieval of blocks
from the file server by using a custom protocol that allows multiple
outstanding read requests, and only sends the requested data. Us-
ing this protocol increases the speed compared to using NFS. See
Ellsworth 20011 for more details about the multithreading tech-
nique, the remote protocol, and their associated speedups.

Tine particle computation algorithm reduces the latency due to load-
ing soiution data by prefetching biocks wnen a new time srep is
stweed. If the previnus h e step cdc1d2tion used files t m.d t + 1,
the new time step calculation will use files r + 1 and r + 2. When
the new srep is started, a separate thread finds which blocks are cur-
rently present for file t f l and quickly loads them for file t + 2.
This prefetching is effective because there is a high correlation be-
tween the particle positions, and hence the blocks used, in adjacent
time steps. However. this prefetching scheme will continue to load
blocks that were used in one time step and are not used in future
time steps. To reduce the amount of unused prefetched data, no
prefetching is used for every tenth time step.

4.3 Particle Computation Performance

The memory reduction techniques result in sigificant time sa\'-
ings. Tjsing the replacement meshes reduced the computation time
by roughly 25%. Prefetching solution blocks saves about an add-
tional 10%. Loading the solution data via demand paging results in
loading only 25 to 45% of the data.

However, the current implementation is still slower than we would
like: the particle computation for the 2 TB data set took 13 days. We
believe that significant optimizations are possible because the CPU
utilization is less than 50%. One possible cause of the low CPU
usage is that the nodes are waiting for solution data from the file
server. A second possible cause is that the operating system does
not work well with the multithreadmg algorithm (used to keep the
CPU working while data are being loaded) because the algorithm
switches contexts at a very hlgh rate. We are currently investigating
the cause of the low CPG utilization.

Another way to speed the computation would be to use an SMP sys-
tem in_stead of a cluster. The SMP system could easily prefetch en-
ure time steps and hold them in memory, which would remove the
performance inpact of the demand paging. Finally, implementing
dynamic load balancing is another way to increase performance.

5 Compression

Since the computed particles use a large amount of disk space, even
after the 16 bit quantization, we have explored compressing the par-
ticle files. We used a prediction preprocessing step that reduced the
entropy of the data as well as the zlib compression library peutsch
and Gailly 19961, used by gzip. The prediction step uses particles
earlier in each trace to compute the predicted value. and the &f-

r,ied several different prediction methods as well as different zlib
compression setrinss. ,411 of the compression methods are lossless.

r,- l,rellrc _ r _ 1. Lleiweeij Lye acF2al and prehcced vahe is ccqressed.

ii
Figiiie 5: Conpression ratio of saved particles b>- rime srep 1 (so,,, -

s ~ ~ , , ~ , ~ , so,.:,^. xhere sorig is the original size of the particle traces.
and sCOm3 is t:ie compressed size.

i /

Tie prechction merhods tried were no predic~on. and zeroth. fin;.
and second order prediction. When no prediction %as used the
panicle traces were compressed between 3.5 and 3.49. depending
on the zlib compression settings. Zeroth order prediction. T.vhere
each was predicted to be the same as the prtvious IXI-
iicle. works much better. compressig Cie panicle dxa b!- 37 ta
7JT- F;rrr --,j,>- ?r-..lf.-r;.c.- > ,cpc T:qp f,c-'?!l = - 7? - :-

1-2' - . I L . ___. ~ .--. r-./-"-L-.. -"-- 1_- t i -., ' -_ !-:
where p! and .x, ax the F h preprocessed.and oriinal pa+cle in
:he trace. respectively. First order prediction predicts that r j e pa-
ticks travel in a straight line. and gets the best results: 41 io
I t Cr comprtssion. Finally. using second order predic5on. n-here
D = x. ~ h-. - 3x.= - . x ; - ~ . results in onl! 1 to 2% compression.

The d i f f e rem z!ib settings had little effect. Chan& the efioii pa-
rameter from 0 (the default) to 9 (the max imm~i did not chanze the
cornpressinn ~a r io . Speci5ing That &e dxa nere filtered ins:sd of
using the d e k k or ELEnz-oniy compression inciezsed rhe coil-
7:ession x i o by abour 1 5 . Howei-er. H~.~frm~-ocly coxpression
rook about half the t h e to compress the &?a. and sped the reuieval
process by about lOcC since it uses a much simplzr Agonthm.

1 . . 1 , . - .

. . cs.;ii?~, rsrio xis cor *.e s z n e far s x z 5 2 2 SI??. &

i p e 5 . The initid t i ~ e sxps did not compress at Ai
hecause ihe comprssion algorithm does not work well o
djdr; S ~ X X ~ L md beczise the i n c z a x d bO(l'hk22piTig da
in comprss?d files is noticeable with very short a x e s . The com-
pression rsrio climbs to about 65% once the traces h2ve abour 100
pz%c!=s. l?;s coxpressior, ratio then sIou-!~- drops to abour ZOrC 2s
ihe race kngL+ increases. A possible explanaiion for the smdle;
xIi2pTZSsiGi- i ratio is Lht nor? f d l y e:-o!%d GXeS are m x h more
complex c h ~ i short traccs. \shch results in less compession. The
o\.erall compression ratio is 41% Nhen using lirst order prec5c:ion
and p:ŝ -*- LAAat-ordy Si5 coxzpression.

T;: s-&cl: 5:; f G z ; a : :j slj &2?.'2?.[,\ c3Amprtss=d p-Ji-
ele races. Instead of ston'ng umber of px ic i e s ir each trxe
in e3ch f i l ~ ' ~ header. we srore the coxpressed size cf each p x t -

- .,- i" ,-- . I : , , ..LC d.>L

6 Viewer

Small Large
~ Staustic Selection Selection

Number of seedpoints 275 5 12
Averaoe number of uarticles 268,116 577,911 1 Maxi&rn number i f particles 321,851 1,092,775 1

j Average trace length 975 1,128 1

Average Frame Rate Small Large 1 Uncompressedparticles, 1 server 5.4 3.4 I

43 6.1 I Compressed p h c l e s , 1 server 7.0
Compressed particles, 2 servers 1’2.2

Table 2: Statistics and viewer performance for two selection sizes.
The frame rates are given in frames per second.

r n . . ond requesL siightiy decreases ;it: rcsponse raw. i m s I> p a -
tially alleviated by applying selection box changes to the next
frame’s prefetch request.

7 Equipment

The particle computation was done on a 49 node Beowulf cluster.
Each node had two 1.67 Hz Athlon M P processors and 1 GB of
memory, and had a Fast Ethernet network connection. The master
node was similar but had 2 GB of memory and Gigabit Ethernet.
The input data as well as the computed particles were stored on a
pair of file servers. Each had two 3 GHz Xeon processors, 4 GB
of memory, dual channel-bonded Gigabit Ethernet, and 21 250 GB
data disks organized into three RAID 5 arrays (4.5 TB total storage
each). T5e viewer timings were doiie oii s wdGatiGii that had
two 3 GHz Xeon processors, 4 GB memory, Gigabit Ethernet, and
a nVidia Quadro FX 3000 graphics card. All the systems ran Red
Hzt Linux.

8 Performance

We measured the speed of the viewer application for a few different
configurations so we could gauge its overall speed. and quanti@ the
eRect of using compression and different numbers of servers. All
of the measurements used the turbopump data set and the same set
of panicles and seedpoints. Each run measured the time the viewer
application took to retrieve a static selection of seedpoints for each
of the time steps in bye simulation. The performancc figures are foi
runs that do not include any additional reference geometry in the
viewer.

We measured three different configurations: one using uncom-
pressed particle traces and one file server, a second usin, 0 com-
pressed particle traces and one server. and a third using compressed
parricles and two servers. Each contlguration was run using two
different particle selections: a small selection near the middle of
the pump and a larger one near the pump’s inlet. Table 2 gives
some statistics about the selections and the resulting performance,
and Figure 6 shows a few representative Sames of the visualizations
resulting from the two selection boxes.

The small selection box contained a 5 ~ 7 x 8 m a y of seedpoincs
and had one row of missing seedpoints because the box was not
entirelj in the domain. The fnme rate when using this selection.

second. Using compressd i;aces increissd the speed to 7 ixmes
?E: second. a 509 sppeciu?. .Adci~g a second fiie scrvpi increesed

>.-,.a U,,,urri~resse:! p a ~ i c l e traces. LX! one serve: xas 5.4 h m e s per

the kame rate by 75% to 12.2 frames per second. When using com-
pressed particles, the frame rate is high enough to allow easy inter-
action.

The large selection box contained an 8 x 8 x 8 array of seedpoints.
lilis is the same number of seedpoints used in the neasuremeny
by Bruckschen et al. [2001]. However, our visualization had a
larger average trace length, 1,128 particles, than the maximum trace
length of 130 particles used in the earlier paper. (Of course, com-
parisons between the two implementations and data sets are diffi-
cult due to equipment differences.) The frame rate with the larger
selection box and uncompressed particle traces was 3.4 frames per
second, which is a bit low. Using compressed traces on one server
increased the frame rate by 27%, to 4.3 frames per second. Animat-
ing the particles using compressed traces and two file servers ran at
6.1 frames per second, a 41 % increase. T h s latter frame rate is rea-
sonably fast: it is fast enough for the overall particle movement to
he understood.

-

Overall, using particle trace compression results in a noticeable per-
formance improvement in the viewer. In addition, using two servers
instead of one adds a large performance boost since disk reads can
be done in parallel.

The above measurements only give performance information for
one mode of operation: when the particles are being animated with
a static selection box. Other modes have different performances.
Changing the selection while animating has somewhat lower per-
formance since the particle prefetching does not retrieve all of the
needed particles. Interactively mohfying the nme step is also a bit
slower since prefetching cannot be used. However, changing the
selection box when time is held consimt is quite fiasi. Ii is faasi be-
cause many of the particle traces &splayed with the previous selec-
tion box can be reused with the new selection box since the boxes
almost always overlap. The relative performances of the different
modes can be seen in the included video.

We are still struggling with one performance problem: the frame
rate is not constant. The time to read the particles from disk for
some time steps is about twice the time for the others, even though
the number of particles retrieved is about the same. The slow time
steps are not the same between different runs, and occur roughly ev-
ery 5 to 20 frames. We have found that running the server process
at a very h g h priority level and locking the memory used some-
times decreases the problem. We have also found that the variable

results in a reisonably constant frame rate. However. even with the
variable frame rate, the particle viewer system is quite effective in
showing the flow inside the turbopump data set.

C-mn I , a I I c ,aLL n - l x , v,ilr uLLus r.,.,.>>- on om file servers: using 2 &Eerenr s::s:em

9 Conclusions and Future Work

In this paper, we have shown that the method of visualizing particle
flow by precomputing particle traces for later retrieval and display
can be scaled to handle multi-terabyte data sets and more than a ter-
abyte of particles. We have discussed the necessary modifications
to Bruckschen et d.’s original algorithm that allow a data set with
a curvilinear mesh to be used, a rd that allow the particle computa-
tion to be done using a PC cluster. In addition, a new compression
technique allows the particle traces to be compressed by 41%, sav-
ing a significant amount of storage space, and also improves the
interactive viewer performance by roughly 30%. Overall. we have
demonstrated a visualization system that allows interactive particle
\ isuaIiza::ior, of 2 xujri-:erabyte CFD datz set using PC hzcware.

8

5n<? l 5 e ?aqi:le c o q 2 iJ Sec.;on 1.:. r , d :he
vieiier 2pplica:ion. Lye ASS :?ope :o soon include ad&g *e ~ 2 . ~ 2 -

Siiiq. to record a small set of scaiar values for each precomputed
paiicle. such as pressure. veiociG- olagnimde. and partic!e age.
v:hich will 2 i s v tk sciexisr to p i n ad&dond understandi-g of

low the %<ewer to selecc particles accorcbng to age. which would
&ow liminng the rnaximm age of particles durin,o the imeracrion.
It would also allow the display of timelines. where parricies are
emirted every n time steps.

c;e &A se:. h, pzr;icdz. reco r&q each pz-ficje . . . s age xoul& d-

10 Acknowledgments

y e ymld e k e t'.z'-
in our experiments. and Tim SandstTom for writing the program we
modified to create tk viewer application. ' I h s work was funded by
the SASA Computing, Infomarion, and Communications Technol-
03 (CICT) Program. partialiy via N.4SA connact DTTS59-99-D-
00437!A61812D.

$zFk fcr ;Tc,,,ix2z 252 .'... 5:: ~f44~~
I

References

ABR.-zM, G., AND TREINISH. L. 1995. An exrended data-flow
archirecture for a data analysis and visualization. In Proceedings
qf I,isualizarion '9s: IEEE Computer Society Press. 263-270.

AHRENS. J., BRISLAM-N. K.. .LI.4RTI.V. K.. GEVECI, B.. LAW,
C. C., ANI! ?.*?:;A. ?.I. 2001. Lzyge-scale data ~.~is~aliz~cc
using parallel data srreaning. IEEE Computer Graphics & .4p-
plications 21, -t (JuiyI.Aupsr'i, 3 4 1 .

BRL-CGSCHEN, R., I<I;ESTER: F.. H~114~0. B.. AND JOY. K. L.
2001. Real-time out-of-core visuaiiza~ion of paiicle traces. In
Proceedings IEEE 2001 Synposiwn on Parallel and Laqe-Dam
Lisnuli:a;ioiz and Grapiiics. IEEE Computer Socicry Press. 45-
50.

CHI.i..NG. Y.-J.: SIL\-.-I. C. T.. .4SD SCHROEDER, W. J. 199s.
Interactive out-of-core isosurface exrracrion. IEEE I4suali:oiioi?
'r.0 /n,4--ka-\
I" (V \ r L V V b I , . 157-172. SET O-s!s6-9:76-x.

CXIANG. Y.-J. 2003. @ut-of-core isosurface extraction of h e -
varying fields over irregular - ~ & . In Proceediizgs of Cisuaii:u-
z i m 3003. JEEE Coinpurer Sociep Prss . 2 i 7-224.

COX. hi. E.. E~LGVOKTH. D. A. 1997. Appiicaiion-
controlled demand paging for out-of-core visualization. In Pro-
ceedings of IEEE Msualizaarion '97. JEEE Computer Society
Press. R. Yzgel and H. Hagen. E&.. 3 5 - 2 3 .

DEL-TSCH. P., A S D G.~ILLY. J.-L.. 1996. RFC 1950 - ZLIIj com-
pressed d a a formar specificarion version 3.3.

ELLSWORTH, D. .4.. A I D MOR.\N, ?. J. 2003. Accelerztinp
!x:e d s a a~dl ;s is by exploiting regt tkt ies . In Proceec'tnys of
I ?suaZi:an'oi? 3003. IEEE Compcter Socien- Press. 561-565.

EILSKORTE D. A. 2001. .;iccdc:sricg 6ez:,anO p q i n g for loczl
ai71 remoi- ocr-okors viscal:zxion. Tech. R". S.4S-0:-001.

\,I"IRAX. ?. 3001. Field model: .4n object-oriented data model for
fields. Tech. rep.. Xationai Aeronaxics and Space Adailllmsza-
tioc. SAG-01-005.

T_'%G, S.. SXORSKI. C., PYD M.4, K. 1997. Out-of-core sr_reePm-
line visualization on large unstructured meshes. I€€€ Transac-
rions on l~lsuaZi.-arion and Computer Graphics 3.4 (Decemher).
3 70-3 s 0.

Figure 6: TWO particle trace visualizations of the turbopump data set. The left column imases show a visualization using a small selection box
in the middle of the domain. and the risht column images show a lar,rrer Selection box near the inlet. The images in the three r o w show the
viwalizations at time steps 300. 1100, and 2100 jrespectively. top to bottomj. The particles in the images on the right are colored according
to their respective seedpoix's location witnic <!e selexior. box.

I

